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The calculations of local and global properties of two-band superconductors have been presented with
particular attention paid to the role of the interorbital scattering of pairs. The properties of such superconduct-
ors are very different from a single-band or typical two-band systems with dominant intraband pairing inter-
actions. The effect of the Van Hove singularity in one of the bands on the properties of the intraband clean
superconductor has been discussed. It leads to marked increase in superconducting transition temperature in the
weak-coupling limit. We also study the inhomogeneous systems in which characteristics change from place to
place by solving the Bogolubov-de Gennes equations for small clusters. Suppression of the superconducting
order parameter by the single impurity scattering fermions between two orbitals is contrasted with that due to
intraorbital impurity scattering. The results obtained for impure systems have been shown as maps of local
density of states, order parameter, and gap function. They can be directly compared with the scanning tunneling
microscope spectra of real material.
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I. INTRODUCTION

Already in 1950s and 1960s of the last century the main
properties of the two-band superconductors have been
clarified.1–4 At that time, however, existing materials did not
show clear evidence of two-band behavior. The experimental
situation has changed with the discovery of high-temperature
superconducting oxides5 and even more with subsequent dis-
coveries of strontium ruthenate,6 magnesium diboride,7 and
iron pnictides.8,9 Even though all of these systems have a
number of bands in the vicinity of the Fermi energy, their
presence shows up in a different way.

Magnesium diboride clearly shows two different gaps of
the same symmetry.10,11 In strontium ruthenate the three-
band model seems to be necessary to explain its puzzling
properties.12,13 The model of superconductivity in iron pnic-
tides is a matter of the ongoing debate.14–17 Iron pnictides
possess a large number of bands around the Fermi energy
and a few of them seem to play an important role in the
superconducting state.18–20 A two-band model has been pro-
posed as a minimal one for these superconductors.21

With two bands near the Fermi energy one generally ex-
pects formation of intraband and interband pairs. In the latter
case the pairs have in general nonzero center of mass
momentum.22 The simpler case1 of superconductivity with
the intraband pairs, which can be scattered between two
bands seems to be relevant in modeling of pnictides. Indeed,
there are strong theoretical23,24 arguments that the interband
interactions may be important in iron superconductors. These
findings make pnictides rather different from MgB2 in which
a main coupling mechanism is of intraband character.25 Thus,
the detailed study of the interband26 pair-scattering mecha-
nism of superconductivity is timely and of importance. Re-
cently this issue has been discussed in connection with both
cuprate27 and pnictide superconductors.28

In this paper, we focus on both clean and disordered two-
band superconductors. In the clean homogeneous systems
the wave vector is a good quantum number and energy bands
in k space are well defined. On the other hand, the model of

impure system is more naturally and precisely formulated in
terms of orbitals in real space. Thus we will use the band
picture when discussing clean homogeneous systems and
real-space representation �sites and orbitals� as far as impure
materials are concerned.

We are mainly interested in the interorbital only mecha-
nism of superconductivity. Without loss of generality we de-
note two orbitals as 1 and 2. The interaction U11 �U22� is
responsible for superconducting instability inside a band
formed by orbitals 1 �2�, whereas U12 promotes scattering of
the superconducting pairs between orbitals 1 and 2. The im-
purity scattering potential is assumed to be short ranged and

of the general form �Vimp
���ci��

+ ci���. It scatters electrons from
site i, orbital �� into orbital � of the same site. If �=�� we
call such impurities intraorbital, if ���� interorbital.

The organization of the rest of the paper is as follows.
Section II presents the general Hamiltonian of the two-
orbital model and the Bogolubov-de Gennes �BdG� approach
used to solve it. Homogeneous superconductors are dis-
cussed in Sec. III, where we study inter alia the effect of the
Van Hove singularity in the density of states in one of the
bands on the properties of the superconductors with inter-
band pair scattering only. The changes induced in the super-
conductor by single intraorbital or interorbital impurities are
discussed in Sec. IV, whereas the finite concentration of im-
purities is considered in Sec. V. We end up with the discus-
sion of our results and their relevance to the most prominent
two-band superconductors: MgB2 and iron pnictides.

II. HAMILTONIAN FOR THE TWO-ORBITAL
SUPERCONDUCTOR

We start with a general Hamiltonian in a real space de-
scribing the system with two orbitals. We assume the spin-
independent effective pairing interaction between fermions
in various orbital states. The randomness in the system is
easily incorporated via site dependence of parameters. The
Hamiltonian reads
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H = �
ij,���,�

�− tij
��� + Vimp

����r�i��ij�ci��
+ cj���

+ �
i,�,�

�e� − ��ci��
+ ci��

+ �
i,�1�2,�3�4

U�1�2�3�4
�r�i�ci�1↑

+ ci�2↓
+ ci�3↓ci�4↑, �1�

where ci��
+ , ci�� are the creation and annihilation operators of

electrons with spin �= ↑ ,↓ at the lattice site r�i= i in the or-
bital �. �� is the electron energy and � is the chemical po-

tential. tij
��� are the hopping integrals between the same or

different orbitals �if �����. U�1�2�3�4
�r�i� denotes the inter-

actions, which are attractive if U�1�2�3�4
�r�i��0. The depen-

dence of the interaction parameters on the position r�i allows
to treat systems with inhomogeneous pairing.

We use the standard mean-field decoupling valid for a
spin-singlet superconductor and get the effective Hamil-
tonian

HMFA = �
ij,���,�

�− tij
��� + Vimp

����r�i��ij�ci��
+ cj���

+ �
i,�,�

��� + V�,��r�i� − ��ci��
+ ci��

+ �
i,���

������r�i�ci�↑
+ ci��↓

+ + H.c.� , �2�

where the order parameters �����r�i� are related to the pairing
correlation functions f����r�i�= �ci�↓ci��↑� through

��1�2
�r�i� = − �

�3�4

U�1�2�3�4
�r�i�f�3�4

�r�i� . �3�

The local Hartree terms V��r�i� depend on the number of par-
ticles at a given site n���r�i�= �ci��

+ ci���

V���r�i� = �
��

U�������r�i�n��−��r�i� . �4�

We consider here only the diagonal correlations �ci��
+ ci�����

=��������n���r�i�.
Hamiltonian �2� is diagonalized using the Bogolubov-

Valatin transformation29,30

ci�↑ = �
	

�u�	�r�i�
	↑ − v�	
� �r�i�
	↓

+ � , �5�

ci�↓ = �
	

�u�	�r�i�
	↓ + v�	
� �r�i�
	↑

+ � �6�

leading to the BdG equations for the amplitudes u�	�r�i�,
v�	�r�i� and the eigenenergies E	

�
j,��

Kij
���u��	�rj� + �

��

�����r�i�v��	�r�i� = E	u�	�r�i� , �7�

− �
j,��

Kij
���v��	�rj� + �

��

����
� �r�i�u��	�r�i� = E	v�	�r�i� , �8�

where the operator Kij
��� reads

Kij
��� = �e� − � + V���r�i���ij���� + Vimp

����r�i��ij − tij
���. �9�

The pairing parameters �����r�i� and the Hartree potentials
V��r�i� are, in turn, expressed in terms of the eigenfunctions
and eigenergies u�	�r�i�, v�	�r�i�, E	 as31

n��r�i� = �
	

�	u�	�r�i�	2f	 + 	v�	�r�i�	2�1 − f	�� , �10�

f����r�i� = �
	

�u�	�r�i�v��	
� �r�i��1 − f	� − u��	�r�i�v�	

� �r�i�f	� .

�11�

In the above formulae f	= �eE	/kBT+1�−1 denotes the Fermi-
Dirac distribution function of quasiparticles. The total num-
ber of particles is given by n=��N� /L=�i�n��r�i� /L, where L
is a number of sites in the cluster.

The local density of states �DOS� N�r�i ,E� is directly ac-
cessible in scanning tunneling microscope �STM� measure-
ments and is proportional to the local conductance
dI�r�i ,V� /dV. In the two-orbital system it is a sum of local
densities of states N�� ,r�i ,E�

N��,r�i,E� = �
	

�	u	��r�i�	2��E − E	� + 	v	��r�i�	2��E + E	�� .

�12�

Obviously, we have in each site N�r�i ,E�=N�1,r�i ,E�
+N�2,r�i ,E�. For a clean system Eqs. �7� and �8� can be Fou-
rier transformed and written �in an analogous form� in recip-
rocal space. For the impure systems with broken translational
symmetry, the Bogolubov-de Gennes Eqs. �7� and �8� are
solved self-consistently in the real space for a small n�m
cluster with periodic boundary conditions. For a two-orbital
model the typical size of the cluster is 20�30. In the next
section we start with the comparison of our real-space �for
small cluster� calculations with the numerically exact results
obtained in the reciprocal space �i.e., for bulk system�.

III. HOMOGENEOUS SUPERCONDUCTORS

In this section we discuss some properties of homoge-
neous two-band superconductors paying a special attention
to the comparison of the accuracy of small cluster calcula-
tions with those for the bulk system. We also consider the
effect of the Van Hove singularity in one of the bands on
properties of interband pairing superconductivity and the role
of various interband couplings.

A. Small clusters vs. bulk systems

We start with the homogeneous system with two orbitals
denoted as 1 and 2. The superconductor is described by the
following set of parameters. The interorbital interaction1 has
the form of pair scattering only U12=U1122, whereas the two
intraorbital interactions are U11=U1111 and U22=U2222. We
consider a two-dimensional square lattice with nonzero hop-
ping integrals between the nearest-neighbor sites only t�
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= tij
�� and hybridization t12= tij

12. We set the direct hoping be-
tween orbitals no. 1 as our energy unit t1= t=1. Since we
neglect the possibility of interorbital pairs, we use the sim-
pler notation �1=�11 and �2=�22.

Figure 1 shows the single-particle energy bands along
main symmetry directions in the two-dimensional Brillouin
zone obtained for the set of parameters e2−e1=2t, t1= t, t2
=2t, and t12=0.05t. The chemical potential �=0 and the total
number of carriers n=1.62.

Figure 2 compares the solutions obtained for the bulk sys-
tem with those for small clusters of various sizes. We con-
sider here the bulk data accurate as determination of the gap
parameter for the bulk homogeneous system �in our case

assumed to be on the order of 10−6t� is only limited by the
time of calculations. We have found that at the band center
the results obtained for the clusters with the size as great as
400 sites are acceptable. Relative changes in the gaps with
respect to the bulk values

��� = ����L� − ��
bulk�/��

bulk · 100%

are in the range of ��1�0.15% in the first band and slightly
larger ��2�1.5% for the second band. Well inside the bands
the spectrum is quasicontinuous and the results agree very
well with the bulk data but near the band edges the spectrum
of finite clusters is discrete and the differences are greater
�cf. Fig. 2�.

B. Interband pairing only superconductor—The role
of Van Hove singularity

Here we treat a homogeneous superconductor with two
bands and the interaction scattering the pairs between them.1

The symbol � is used here to denote the band in k� space.
As a general rule, one finds that the interband scattering

U12 plays a minor role in superconductors with dominant
intraband interactions.32 This interaction, however couples
two bands and may lead to the increase in the superconduct-
ing transition temperature.4,33 The situation changes drasti-
cally if the interband pairing is the only existing interaction.
The properties of the superconductors with dominant inter-
band scattering are markedly different from those with domi-
nant intraband interactions. In particular,34 the superconduct-
ing transition takes place for an arbitrary sign of U12. The
value of the gap in the first band is determined by the inter-
action U12 and the density of states in the second band and
vice versa, the gap in the second band is proportional to the
partial DOS at the Fermi level in the first band.

This can be easily seen from the general two-band BCS
equations1

�1�1 + U11F1� = − U12�2F2,

�2�1 + U22F2� = − U12�1F1, �13�

where

F� = 

0

�c

dEN��E�
tanh

�E2 + ��
2

2kBT

�E2 + ��
2

�14�

and N��E� denotes single-particle density of states in the
band �. As we are interested in the limit of interband pair
scattering only we put U11=U22=0. The above equations re-
duce to

�1 = − U12�2

0

�c

dEN2�E�
tanh

�E2 + �2
2

2kBT

�E2 + �2
2

,

-6
-4
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0
2
4
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E(
k)

(0,0) (π,0) (π,π) (0,0)
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FIG. 1. �Color online� Energy bands of the two-dimensional
square lattice with the parameters e2−e1=2t, t1= t, t2=2t, and t12

=0.05t. The chemical potential is located at �=0 and the resulting
total number of particles n=1.62.
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FIG. 2. �Color online� The upper panels show the dependence of
�� for both bands on the chemical potential � for the bulk system
�solid curve� and for the clusters of size 15�19 �thin line with
pluses� and 21�27 �line with crosses�. The other parameters are:
e2−e1=2t, t1= t, t2=2t, t12=0.05t, U1=−3.5t, U2=−3t, and U12=
−0.5t. At the lower panels temperature dependences of �� are
shown for e1−�=2t. The insets show the data near T=0 on the
expanded scale.
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�2 = − U12�1

0

�c

dEN1�E�
tanh

�E2 + �1
2

2kBT

�E2 + �1
2

. �15�

It is clear from Eq. �15� that the value of � in the second
band is determined by the density of states in the first one
and vice versa. It is also obvious that nonzero solutions can
be obtained for both signs and an arbitrarily small value of
the coupling U12. For its positive value the order parameters
in the two bands have opposite signs, whereas for negative
U12 they are of the same sign.

The model with interorbital pairing only has a number of
unusual features. It has been found28,35 that the ratio �2 /�1
=�N1 /N2, where N2�N1� is the density of states at the Fermi
level in band 2�1�. The superconducting transition tempera-
ture of the system is given by the BCS-type expression

Tc = 1.136
�c

kB
exp� − 1

�ef f
 �16�

with �ef f =�0=�U12
2 N1N2. The dependence of �ef f on the

square of U12 shows that superconducting transition tempera-
ture is the same independent whether the interaction is attrac-
tive or repulsive.

It often happens that the Fermi level in superconductors
lies close to the Van Hove singularity. In the layered systems
with nesting properties of the �quasi-two-dimensional� Fermi
surface, the density of states near the Van Hove singularity
changes logarithmically

N�E� = N0 ln�2W/	E	���	E	 − W� , �17�

with 2W being the bandwidth and ��x� the step function. It
is known that the existence of such singularity modifies36 the
BCS expression for the transition temperature, Eq. �16�. In
particular, in the one-band case and the weak-coupling
limit37 ��1, it leads to the increase in superconducting tran-
sition by changing the effective interaction: 1

�ef f
=� 2

�0
.

Here we assume the density of states in the second band
to be singular N�2,E�=N2 ln�2W / 	E	� near the Fermi energy,
whereas that of the first band as flat N�1,E�=N1. Near Tc Eq.
�15� are linearized, we approximate tanh�x�=min�x ,1� and
find �we put here �=kB=1�

�1 = − �2U12N2�1 + ln
2W

c
+ ln

c

2Tc
+ ln

2W

c
ln

c

2Tc

+
1

2
�ln

c

2Tc
2� ,

�2 = − �1U12N1�1 + ln
c

2Tc
� . �18�

The analysis of the above set of equations in the weak-
coupling limit �U12→0� leads to the approximate BCS-type
expression �16� for the superconducting transition tempera-
ture with 1

�ef f
= 21/3

�0
2/3 = � 2

U12
2 N1N2

�1/3 and to the modification of
the prefactor, which changes from 1.136c to
1.136c�2W /c�2/3. It is interesting to note that up to the
prefactor the Van Hove singularity in one of the bands in-

creases Tc of the intraband superconductor at the weak cou-
pling only �0�0.5.

In a similar way one can calculate the effect of the Van
Hove singularity on the ratio of the gaps

�2

�1
at zero tempera-

ture. One finds

�1�0� = − �2�0�U12N2�1 − ln
�2�0�
2W

−
1

2
�ln

c

2W
2

+
1

2
�ln

�2�0�
2W

�2� ,

�2�0� = − �1�0�U12N1 ln
2c

�1�0�
. �19�

Even in the extreme weak-coupling limit �0→0 when Tc,
�1, and �2→0 the gap ratio is not given by that of the
densities of states and depends on Tc and thus �0. The ratio
�1

�2
decreases from the value much larger than �N2

N1
for small

�0 to the values well below �N2

N1
for larger �0. However, it is

interesting to note that the correct description of the intra-
band superconductivity requires the strong-coupling theory,28

even if �0�1. The Van Hove singularity plays a similar role
in the Eliashberg theory.36

C. The role of the band couplings

Before the presentation of real-space local properties of
the model with general interactions we further discuss the
homogeneous systems and the influence of model parameters
on the superconducting bulk state. In particular, we are inter-
ested in the dependence of superconducting state on the cou-
plings between orbitals. The hybridization parameter t12 pro-
vides single-particle coupling and the interband pair
scattering U12 provides the direct two-body interorbital inter-
action. The hybridization changes a single-particle spectrum
and this influences the superconductivity.

Figure 3 �left panel� shows the changes in the order pa-
rameter �1 due to the increase in the hybridization t12. The
strong decrease in �1 with t12 results from the changes in the
single-particle spectrum in the bands. One observes decrease
in the projected density of states around the Fermi level. This

0
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∆

|U12|

U11=0: |∆1|
|∆2|

(b)(a)

FIG. 3. �Color online� Increase in the hybridization results in
significant decrease in �1 for t12�2 �left panel�. For a given set of
parameters �e2−e1=2t , t1= t , t2=2t , U11=−3.5t , n=1.2�, it is
mainly due to diminishing the density of states near the Fermi en-
ergy �cf. Fig. 4�. Right panel shows the dependence of both order
parameters on the modulus of the intraorbital interaction U12 in a
model with t12=0 and U11=U22=0.
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is illustrated in Fig. 4. Left panel shows the total �dashed
curve� and projected onto orbital 1 and 2 densities of states
in the system without any interband coupling �t12=0�,
whereas in the right panel for strong hybridization t12=5t. It
is worth mentioning that the existence of nonvanishing hy-
bridization t12 between the orbitals is sufficient to induce the
pairing field �ci2↓ci2↑� even if U22=U12=0.

As mentioned, the interorbital interaction alone �no hy-
bridization� leads to the superconducting instability indepen-
dently if it is repulsive or attractive. It induces gaps in both
bands. The results are shown in the right panel of Fig. 3. The
value of the gap in the second band is larger because the
density of states near EF in the first band is larger �cf. Eq.
�15��. The simultaneous presence of the interband �U12� and
intraband �here U11 only� interactions results in the increase
in the order parameter in the active band, the appearance of
� in the nonactive band and characteristic modifications of
the quasiparticle density of states as illustrated in Fig. 5. The
nonzero density of states around chemical potential for U12
=0 is simply a result of the absence of couplings between the
bands �as also t12=0� and the lack of pairing in the second
band. This presents the �slightly artificial� case of coexisting
normal electrons and coherent Cooper pairs in the system.

This ends up our analysis of the homogeneous two-band
superconductors. In the next sections we study various inho-
mogeneities starting with single potential scatterer.

IV. SINGLE POTENTIAL IMPURITY IN A CLEAN
SUPERCONDUCTOR

In this section we study a single short-ranged nonmag-
netic impurity embedded in an otherwise clean system. We

solve BdG Eqs. �7� and �8� on a small cluster of the size L
=13�17 with an impurity placed in its center. In the two-
orbital model the impurity may scatter electrons from a given
orbital to the same orbital �intraorbital scattering denoted
Vimp

1�2�� or to the other orbital �interorbital scattering—Vimp
12 �

located at the same site. We allow for both, the intraorbital
and interorbital pairing interactions and compare the Tc
changes induced by two types of impurities. We are using
Bogolubov-de Gennes approach which allows for the distor-
tion of the wave function around impurity and is more suit-
able to treat inhomogeneous superconductors than the BCS
or Eliashberg �both k�-space-based� theories.31

We consider the system described by the following set of
parameters e2−e1=2t, t1= t, t2=2t, t12=0.05, and n=1.2, and
start with the pairing interaction between electrons occupy-
ing the first orbital only: U11�0 and U12=0. Due to the
weak hybridization t12=0.05t there exists small coupling be-
tween the bare bands. Figure 6 illustrates the changes in the
order parameter �1 around intraorbital �left panel� and inter-
orbital �right panel� impurities. Note different patterns of
changes in �1. The intraorbital impurity more strongly sup-
presses the order parameter at the impurity site and leads to
its slight increase at nearest-neighbor sites with respect to the
value for the homogeneous system. On the other hand the
interorbital impurity scattering diminishes the order param-
eter at the impurity site and around it but slightly less for the
next-nearest neighbors than for the nearest neighbors. The
interorbital impurity modifies the order parameter at the dis-
tances larger than the intraorbital one, even if both impurities
are of the on-site variety. For the parameters used we find
�1=1.07t for the clean system. At the impurity site one finds
the strongly suppressed values: �1�0,0�=0.17t for Vimp�r�i�
=Vimp

12 �r�i� and �1�0,0�=0.11t for Vimp�r�i�=Vimp
1 �r�i�=4t.

In Fig. 7 we show the local quasiparticle density of states
at the impurity site r�= �0,0� and its nearest �0,1� and next-
nearest �1,1� neighbor sites. The interorbital impurity induces
states inside the gap.

The interesting aspect of these studies is connected with
the fact that the effect of Vimp

12 depends on the sign of the
interorbital interaction U12. There is no similar dependence
connected with intraorbital impurities �Vimp

1 or Vimp
2 �. This is

illustrated in Fig. 8. The changes in the order parameters �1
and �2 clearly depend on the sign of interorbital interaction.
For the clean system we have 	�1

0	=2.69t, 	�2
0	=2.07t. At the
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FIG. 4. �Color online� Changes in the normal-state density of
states �total—the dashed curve; projected onto respective orbitals,
solid curves� for the system as in Fig. 3 with the hybridization t12

=0 �left panel� and 5t �right panel�. The Fermi energy is at E=0.
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interorbital impurity site we find 	�1	=1.61t and 	�2	=1.21t
for U12=−5t, i.e., roughly 40% reduction. On the other hand,
in the superconductor with U12=+5t one gets 	�1	=0.20t and
	�2	=0.23t at the impurity site. The order parameters are
suppressed a few times more strongly in the superconductor
with repulsive interorbital interaction.

Similar effect has been earlier noted38 within the weak-
coupling Eilenberger theory for finite �interband� impurity
concentration in the two-band superconductors. Here we ob-
serve similar behavior already for single impurity. Perform-
ing analytical studies of the Tc suppression in the two-band
case, the authors38 have noted that strong suppression of su-
perconductivity for finite concentration of interband impuri-
ties is to be expected for the interband couplings fulfilling
the inequality

U12 � −
N1

2U11 + N2
2U22

2N1N2
. �20�

In other words, much weaker suppression of Tc is expected
for attractive interband interaction �note that positive inter-

actions are attractive in the notation of the paper38�.
In more detail, this feature is again illustrated in Fig. 9,

which shows the energy dependence of the quasiparticle den-
sity of states at and near the impurity site for attractive �left
panel� and repulsive �right panel� interorbital interactions. In
the latter case the order parameter at the impurity site and
around it is strongly suppressed and new states appear inside
the gap. The intraorbital impurity scattering �not shown� is
not as effective in suppressing superconductivity indepen-
dently of the U12 sign. This is due to a similar mechanism
�Anderson theorem� to that operating in single-band s-wave
superconductors.39

There is also an interesting analogy between our two-
orbital model and the two-band model related to the phases
of the order parameters. As noted earlier for repulsive inter-
band interactions the s�-wave pairing state34,40 appears. This
state has s-wavelike order parameters with the phases differ-
ing by � on two Fermi surfaces. It means that if the phase of
�� on one of the Fermi surfaces is �, the phase on the other
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FIG. 7. �Color online� The energy dependence of the local qua-
siparticle density of states projected onto orbital 1, at the impurity
site �0,0� and its neighbors for the system with intraband �left panel�
and interband �right panel� impurities for U11=−3.5t and U12=0.
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one is �+�. This phase relation is, in fact, responsible for
strong suppression of superconductivity by interband impu-
rities.

In our orbital picture the phases of the gaps �1 and �2
change at the Vimp

12 impurity site by � with respect to those in
the bulk. Obviously, there is no such effect for attractive
interorbital interaction.

V. MANY IMPURITIES IN THE TWO-ORBITAL
SUPERCONDUCTOR

In this section, we consider the two-orbital supercon-
ductor with interorbital and intraorbital impurities. Our
sample is of rectangular shape. It is L=17�21 sites large
with a square lattice and a unit lattice constant. It contains
20% interorbital or intraorbital impurities randomly distrib-
uted. We are not averaging over the distributions of impuri-
ties but rather calculate the local properties at each site for a
given configuration of impurities and present the results in
the form of maps. To make the impurities more realistic we

assume that they are extended Vimp
����r�i�=V���f id with f id being

a number from the Gaussian distribution at the sites distance
id=1,�2,2 from the impurity. The superconductor studied in
this section is characterized by one active orbital with U11
=−3.5t and interorbital interaction 	U12	=5t. The other pa-
rameters are: e2−e1=2t, t1= t, t2=2t, t12=0.05, and n=1.2.
All energies are measured in the units of t.

Figures 10 and 11 show the suppression of both order
parameters for intraorbital and interorbital impurities, respec-
tively. In all cases one observes similar patterns and a large
degree of �anti�correlation between the impurity positions
and the gap values. However, the interorbital impurities sup-
press both order parameters to a lesser extent for U12=−5t
than for the opposite sign of this coupling. For negative U12
the phases of the two order parameters are the same and the
scattering of a pair from orbital 1 into orbital 2 is “harmless,”
as the superconductor as a whole looks like s-wave one, and
is protected against impurities by the Anderson theorem.39

Even though the maps presenting suppression of the order
parameters by intraorbital and interorbital impurities shown
in the Figs. 10 and 11 look largely similar big differences are
observed in the local densities of states. They are shown in
Figs. 12 and 13. The left panels of both figures show the
local densities of states N�1,y ,E� as a function of energy
along the line x=−7. The middle panels present the results

for N�2,y ,E� and the total DOS is plotted in the right panels
along the same cuts. Intraorbital impurities, Fig. 12 induce
large inhomogeneities, which show up as gaps in the local
density of states of the amplitude largely changing from site
to site. Sites close in space may have very differentiated
gaps. Similarly, the interorbital impurities in a supercon-
ductor with large attractive pair scattering also induce inho-
mogeneities. However, they are much smaller, at least if cal-
culated for the same distribution and strength of impurities.
The gaps also change from site to site but more gradually,
i.e., on a larger spatial scale. On the contrary, the same in-
terorbital impurities nearly completely destroy the supercon-
ductivity in the system with strongly repulsive interorbital
pair scattering, i.e., in the s�-like state.

Different reaction of the systems with repulsive and at-
tractive interorbital interactions to impurities may well be
characterized by the dependence of the superconducting tran-
sition temperature Tc or the average gap on the strength of
Vimp. In the left panel of Fig. 14 we show the relative change
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in ��1+�2� in the impure system normalized to its clean
value ��1+�2�0 with the increasing strength of intraorbital
impurities Vimp=Vimp

1 =Vimp
2 �dashed curve with triangles�

and interorbital impurities Vimp=Vimp
12 in a system with U12

=−5t �curve with full squares� or U12=+5t �curve with dots�.
The right panel of that figure shows the changes in Tc with
Vimp

12 for two signs of pair scattering. In full analogy with the
results of Kogan et al.38 we observe much stronger diminish-
ing of Tc �normalized to its clean system value Tc0� for re-
pulsive than for attractive U12. Similar dependence of Tc on
impurity strength for both signs of U12 at small disorder is
attributed to our use of the Bogolubov-de Gennes approach
which is more suitable to study inhomogeneous systems than
the k�-space-based Elishberg or BCS theories. In the BdG
approach the condensate wave function may distort around
the impurity and this allows the system to keep its conden-
sation energy and Tc much higher than it would result from
the Abrikosov-Gorkov approach to impure superconductors,
which does not allow for local changes in the wave function.

VI. DISCUSSION AND CONCLUSIONS

We have studied the model of two-band superconductor
with interorbital pair scattering interactions. In the first part
of the paper we focused on some general aspects of the two-
band model. In particular, we have found that the presence of
Van Hove singularity in the density of states in one of the
bands is responsible for strong enhancement of the supercon-
ducting transition temperature of intraband only supercon-
ductor in the weak-coupling limit, i.e., for �0�1. However,
neglecting the changes in the prefactor, the mere increase in
effective interband coupling by Van Hove singularity seems
to be not large enough to make the electron-phonon coupling
responsible for superconductivity, at least so in LaFeAsO, for

which the coupling constant matrix has been found41 with
�12=0.093 and �21=0.124. Interestingly, our analysis sug-
gests that for the elevated values of �0�0.5 the presence of
Van Hove singularity diminishes Tc in comparison to the
system without logarithmic enhancement of DOS. The model
with both types of pairing interactions �i.e., intraband and
interband� leading to s- or s�-wave symmetry displays a
number of features similar to those observed in real many
band materials, particularly MgB2 and iron pnictides. The
interband impurity scatterers were intensively studied42 in
connection with MgB2. It has been found that the Eliashberg
theory leads to much slower rate of Tc suppression than that
predicted on the basis of BCS treatment.

MgB2 is a well-established superconductor with two
gaps.43 It is believed to have one active band and relatively
weak interband coupling. Its much slower44 suppression of
superconducting transition temperature by impurities45,46

than that predicted by the Abrikosov-Gorkov theory may
point towards the interband character of impurities and re-
pulsive character of interband pair scattering �U12�0�. In
the context of the two-orbital model of inhomogeneous sys-
tems similar case is illustrated in the upper row of Fig. 13.

Another prominent recent example of many band super-
conductors is provided by the iron pnictides.47 These super-
conductors seem to belong to another class of many band
materials in which the interband interaction is dominant and
the order parameter has different signs on two Fermi-surface
sheets34—the s� state.

The existing samples are certainly strongly disordered, as
it can be inferred from large values of resistance just above
Tc and the usual k�-space description is not valid. That is why
we have adopted here the orbital description which remains
valid in the real-space representation. Despite large disorder
the pnictides are superconducting with quite large Tc. This
suggests s- or s�-wavelike order parameter. As we have seen
the superconductor with dominant attractive U12 interactions
is quite robust against impurities, both of intraorbital and
�even more� interorbital types �cf. Figs. 12 and 13�.

The robustness of the two-orbital superconductors with
attractive interorbital pair scattering to the impurities can be
traced back to the Anderson theorem. On the other hand, the
s�-like state existing in systems with repulsive interorbital
pair interactions is sensitive to interorbital impurity scatter-
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FIG. 13. �Color online� The energy dependence of the partial
and total densities of states N�� ,y ,E� at the sites along the line x
=−7 of the sample shown in Fig. 11. The upper row corresponds to
attractive interorbital interactions, whereas the lower row to repul-
sive ones.
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ing. These results are real-space analogs to the previous find-
ings reported for similar calculations in reciprocal space.38,42

The maps plotted in Figs. 10 and 11 are in qualitative
agreement with the recent scanning tunneling microscopy
�STM� studies for pnictide superconductors.48–50 In those pa-
pers a relatively small variation in local gaps have been ob-

served with the average gap �̄=6–7 meV and 2��0� /kBTc
�7 indicating strong-coupling superconductivity. The de-

tailed analysis of the STM spectra of pnictides will be the
subject of future studies.
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